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Abstract—This paper develops a cloud-based protocol for a
constrained quadratic optimization problem involving multiple
parties, each holding private data. The protocol is based on the
projected gradient ascent on the Lagrange dual problem and
exploits partially homomorphic encryption and secure commu-
nication techniques. Using formal cryptographic definitions of in-
distinguishability, the protocol is shown to achieve computational
privacy. We show the implementation results of the protocol
and discuss its computational and communication complexity.
We conclude the paper with a discussion on privacy notions.

I. INTRODUCTION

The push towards increasing connectivity of devices is
enabling control applications to span wide geographical areas.
This increase in the number of available sensors, actuators
and data has led to an increase in the controller’s required
computational capacity for global processing. One solution to
this issue is to outsource the computations to powerful remote
servers, generically called clouds. Cloud-based computation
services offer the potential to aggregate and process infor-
mation from a large number of agents, in domains such as
machine learning, smart grids and autonomous vehicles, with
less overhead than distributed computations. This emerging
Internet of Things paradigm makes privacy a fundamental
issue in many cloud-based applications due to the sensitive
nature of the collected data. Recent examples such as data
leakage and abuse by aggregating servers [1], [2] have drawn
attention to the risks of storing data in the clear and urged
measures against an untrustworthy cloud.

Computing on encrypted data is known as homomorphic
encryption (HE). Fully HE allows the evaluation of Boolean
functions over encrypted data and was introduced in [3], and
further improved in e.g., [4], [5]. However, the computa-
tional overhead is prohibitive, due to the complexity of the
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cryptosystem primitives and size of the encrypted messages.
Partially HE schemes are tractable but can support either only
multiplications between encrypted data, such as El Gamal [6],
or only additions between encrypted data, such as Paillier [7].

Homomorphic Encryption has been recently used to design
encrypted controllers, e.g. [8]–[12]. Several works have ad-
dressed gradient methods with partially HE [13]–[15] to solve
unconstrained optimization problems. In contrast, our work
focuses on adding constraints which substantially complicate
the optimization problem. Works such as [16], [17] have pro-
posed solutions with HE and secure multi-party computation
for constrained distributed optimization problems, but treat the
constraints evaluation differently than our work, in terms of
data distribution, solution architecture, privacy requirements
and tools used. Examples such as [18], [19] make use of
differential privacy techniques in optimization algorithms, that
follow different privacy guarantees than we consider.

We develop a new tractable protocol to privately solve
centralized constrained quadratic optimization problems. To
solve the optimization problem on encrypted data, we use an
additively homomorphic encryption scheme, where, in short,
addition commutes with the encryption function. The novelty is
how to handle in a privacy-preserving manner the constraints,
which introduce non-linearities that cannot be supported by
additively homomorphic encryption schemes. We show that
a projected gradient method that operates on the Lagrange
dual problem can alleviate this problem and can be run
on encrypted data by exploiting communication between the
participating parties. The main contributions of our work are:
• We formally state and prove computational security guaran-
tees for such protocol.
• We implement the protocol and show the computational and
communication complexity produce reasonable running times.
• We emphasize and analyze the difference between compu-
tational privacy and non-unique retrieval of the private data.

This paper provides detailed security proofs, analyses and
implementations not available in the previous paper [20]. For
a more detailed version and comparison with the solution
in [21], the reader is directed towards the technical report [22].

II. PROBLEM SETUP

A. Motivating Examples
Quadratic optimization is a class of problems frequently

employed in control systems design and operation. As a first
example, consider estimating the state of a dynamical system
from privacy-sensitive sensor measurements.
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Let the system dynamics and sensor measurements be:

xt+1 = Axt + wt, yt = C xt + vt, (1)

for t = 0, . . . , T − 1, where wt, vt are the process and mea-
surement noises. The system and sensor parameters A ∈ Rn×n
and C ∈ Rp×n can be known to the cloud while the
sensor measurements y0, . . . , yT−1 are privacy-sensitive. The
untrusted cloud has to collect the measurements and output an
initial state estimate x0, while maintaining the privacy of the
sensor data and final output. A simple state estimate may be
found as the solution to the least squares problem:

min
x0∈Rn

1

2

∑T
t=0

‖yt − CAt x0‖22 = min
x0∈Rn

1

2
‖y −O x0‖22, (2)

where O ∈ RTp×n is the system observability matrix. More
general state estimation problems may also include constraints,
e.g., the initial state lies in a private polyhedral set Dx0 � b.

As a second example, consider steering a linear dynamical
system from a private initial position while guaranteeing
safety constraints. The cloud has to compute a private model
predictive controller. Such problems arise in vehicles which are
deployed to explore hazardous environments or when different
users compete against each other and want to hide their tactics.

B. Problem statement

The above examples can be modeled as constrained
quadratic optimization problems with distributed private data.
We consider three types of parties involved in the problem:
a number of agents Ai, i = 1, . . . , p, a cloud server C and
a target node T . The purpose of this setup is to solve an
optimization problem with the data provided by the agents and
the computation performed at the cloud, and send the result
to the target node. The architecture is presented in Figure 1.

Consider a strictly-convex quadratic optimization problem:

x∗ = arg min
x∈Rn

1

2
xᵀQC x+ cᵀAx

s.t. AC x � bA,
(3)

which we assume to be feasible and where the variables and
the parties to which they belong to are described as follows:
Agents A = (A1, . . . ,Ap): The agents are parties with low
computational capabilities that possess the private information
bA and cA. The private information is decomposed across the
agents as: bA = (b1, . . . , bp) and cA = (c1, . . . , cp), with
bi ∈ Rmi and ci ∈ Rni being the private data of agent i such
that

∑p
i=1mi = m and

∑p
i=1 ni = n, i = 1, . . . , p.

Cloud C: The cloud is a party with high computational capa-
bilities that knows the matrices QC ∈ Sn++ and AC ∈ Rm×n.
Target Node T : The target node is a party with more
computational capabilities than the agents that is interested
in the optimal solution x∗ of the problem.

In cloud applications, the service provider has to deliver the
contracted service or otherwise the clients switch to another
provider. Thus, the cloud will not alter the data it receives.
Moreover, the agents’ and target node’s interest is to obtain the
correct result from the service, so they will also not alter their

Fig. 1. Architecture of the problem: Agents are low-resource parties that
have private data that they outsource to a powerful server, called the cloud.
The cloud has to solve an optimization problem on the private data of the
agents and send the result to a party called the target node.

data. However, the parties are not prohibited to locally process
the data they receive. This model is known as semi-honest.

Definition 1. (Semi-honest model) A party is semi-honest if it
does not deviate from the steps of the protocol but may store
the transcript of the messages exchanged and process the data
received in order to learn more information than stipulated.

The purpose of the paper is to solve Problem (3) using a
secure multi-party computation protocol for semi-honest par-
ties. The protocol takes as inputs the private data of the agents
and the cloud’s data, involves computing and exchanging mes-
sages, and eventually outputs the solution of the optimization
problem to the target node. The protocol should guarantee
computational privacy, as formally defined in the next section.
We consider that all the data is represented on integers of l
bits and comment on this further in Section IV-B.

III. PRIVACY GOALS AND PRELIMINARIES

In what follows, {0, 1}∗ defines a sequence of bits of un-
specified length. Two sequences are computationally indistin-
guishable [23, Ch. 3], denoted by

c≡, if no efficient algorithm
can distinguish between them. We use this concept when
defining two-party privacy: a protocol privately computes
a functionality if all information obtained by a party after
the execution of the protocol (while also keeping a record
of the intermediate computations) can be obtained only from
the inputs and outputs available to that party.

Definition 2. (Two-party privacy w.r.t. semi-honest behav-
ior [24, Ch. 7]) Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗
be a functionality, and f(x1, x2) =

(
f1(x1, x2), f2(x1, x2)

)
,

for any inputs x1, x2 ∈ {0, 1}∗. Let Π be a two-party protocol
for computing f . The view of the ith party (i = 1, 2) during an
execution of Π on the inputs (x1, x2), denoted V Π

i (x1, x2), is
(xi, coins,m1, . . . ,mt), where coins represents the outcome
of the ith party’s internal coin tosses, and mj represents the
jth message it has received. For a deterministic function-
ality f , we say that Π privately computes f if there exist
probabilistic polynomial-time algorithms, called simulators,
denoted Si, such that:

{Si(xi, fi(x1, x2))}x1,2∈{0,1}∗
c≡ {V Π

i (x1, x2)}x1,2∈{0,1}∗ .

For protocols that involve more than two parties, Defi-
nition 2 can be extended to multi-party privacy, by also
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taking into consideration the views of coalitions of semi-
honest parties. We direct the reader to [24, Ch. 7] and [22].

We note that our privacy demands differ from [16], where
input-output inference is used to assess what agents can infer
about each other’s data, while we require multi-party privacy.
Additively Homomorphic Encryption. Let E(·) define a
generic encryption primitive, with domain the space of private
data, called plaintexts, and codomain the space of encrypted
data, called ciphertexts. For probabilistic encryption schemes,
the encryption primitive also takes as input a random number.
The decryption primitive D(·) is defined on the space of
ciphertexts and takes values in the space of plaintexts. In
additively homomorphic schemes, there exists an operator ⊕
defined on the space of ciphertexts so that:

D(E(a)⊕ E(b)) = a+ b, (4)

for any plaintexts a, b supported by the scheme. Formally, the
decryption primitive D(·) is a homomorphism between the
group of ciphertexts with the operator ⊕ and the group of
plaintexts with addition +, which justifies the name of the
scheme. Such a scheme also support subtraction, by adding
the additive inverse, and multiplication between an integer
plaintext and an encrypted message.

In this paper, we use the Paillier cryptosystem [7], which is
a probabilistic asymmetric cryptosystem, with a public key
used for the encryption of the private messages and dissemi-
nated publicly, and a private key known only to its owner, used
for the decryption. In the Paillier cryptosystem, the messages
are elements of the ring of integers modulo N , denoted by
ZN , where N is a large integer of σ bits, called the Paillier
modulus. The ciphertexts take values in the multiplicative
group of integers modulo N2, denoted by Z∗N2 . For a plaintext
message a, we denote the Paillier encryption by [[a]] := E(a)
and we will use throughout the paper the following abstract
notation for the operations on the encrypted space:

[[a]]⊕ [[b]]
d
= [[a+ b]], b⊗ [[a]]

d
= [[ba]], (5)

for plaintexts a, b ∈ ZN , where d
= means that the equality

holds after applying the decryption primitive. We will use the
same notation to denote encryptions and operations on vectors.

Under the assumption of decisional composite residuos-
ity [7], the Paillier scheme is semantically secure (the formal
definition can be found in [24, Ch. 5]), which means that
an adversary that has the plaintext messages a and b cannot
distinguish between the encryptions [[a]] and [[b]].

Symmetric encryption scheme. Symmetric key algorithms
perform the encryption and decryption with the same key. The
symmetric key cryptosystem that we use additively blinds a
private value by noise. For messages of l bits, the key is
generated as sk ∈ Z of length λ+ l, where λ is the statistical
security parameter. The encryption primitive is E′(a) = a+sk,
with a ∈ [0, 2l) ∩ Z, and the decryption is obtained as
a = D′(E′(a)) = E′(a)−sk. The security of this scheme lies
on generating a uniformly random key and on using this key
for encryption only once, which yields that the distribution of
E′(a) is statistically indistinguishable from a random number
sampled of l + λ+ 1 bits. We also notice that this symmetric
cryptosystem commutes with the Paillier cryptosystem.

IV. SECURE CONSTRAINED QUADRATIC OPTIMIZATION

For strongly convex problems, one can resort to duality
theory [25, Ch. 5] to compute the projection on the feasible set
and to retrieve the primal optimum from the optimal value of
the dual problem. The dual of the optimization problem (3) is:

µ∗ = arg max
µ∈Rm

− 1

2
(Aᵀ
Cµ+ cA)ᵀQ−1

C (Aᵀ
Cµ+ cA)− µᵀbA

s.t. µ � 0. (6)

The gradient of the dual objective function g(µ) is:

∇g(µ) = −ACQ−1
C (Aᵀ

Cµ+ cA)− bA. (7)

Under standard constraint qualifications, e.g., Slater’s con-
dition [25, Ch. 5], strong duality between the primal and dual
and the optimality conditions (Karush-Kuhn-Tucker) hold:

QCx
∗ +Aᵀ

Cµ
∗ + cA = 0 (8)

ACx
∗ − bA � 0, µ∗ � 0 (9)

µ∗i (a
ᵀ
i x
∗ − bi) = 0, i = 1, . . . ,m. (10)

For strictly convex problems, i.e., QC ∈ Sn++, the optimal
solution of the primal problem can be obtained from (8) as
x∗ = −Q−1

C (Aᵀ
Cµ
∗ + cA).

We use the projected gradient ascent algorithm to compute
the optimum in problem (6). It is composed by iterations (11),
where η > 0 is the step size and µk+1 is the projected value
of µk + η∇g(µk) over the non-negative orthant1:

µk+1 = max{0, µk + η∇g(µk)}, (11)

A. Projected gradient ascent on encrypted data

As stated in Section II, we aim to solve an optimization
problem outsourced to the cloud on private distributed data
from the agents and send the result to the target node. To pro-
tect the agents’ data, we use an encryption scheme that allows
the cloud to perform linear manipulations on encrypted data, as
described in Section III. To this end, the target node generates
a pair of keys (pkT , skT ) and distributes the public key to the
agents and cloud, enabling them to encrypt their data.

Notice that for a quadratic objective function, only linear
operations in the private data µk, bA and cA are required
in order to compute the gradient (7). Hence, by taking
advantage of the homomorphic property (5), the cloud can
locally compute the gradient in the encrypted domain, for
all k = 0, . . . ,K − 1. A first challenge lies in performing
the comparison with zero. Due to the modular arithmetic
and probabilistic nature of the Paillier encryption scheme, the
order on the plaintext space is not preserved on the ciphertext
space and comparison on encrypted data cannot be performed
locally by the cloud. A second challenge is to then perform
the update of the encrypted iterate (11) in a private way, so
that the result of the maximum operation is not revealed to
any of the parties involved.

Secure comparison protocol. To privately compute (11),
we need to hide the comparison result between the updated

1In (11) and in the rest of the paper, when we refer to comparison of vectors
we mean element-wise comparison.
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iterate µk + η∇g(µk) and zero from both the cloud and
the target node. The comparison protocol described next is
designed to reveal the result of the comparison to the target
node. However, if we introduce an additional step (π is a
random permutation on two elements):

[[a]], [[b]]← π([[0]], [[µ+ η∇g(µ)]]), (12)

where the cloud randomizes the order of the two values
that it wants to compare, then the target does not learn any
information by knowing the result of the comparison.

The DGK protocol for secure comparison of two private
inputs of different parties was introduced in [26], [27]. To this
end, the authors proposed and used an additively homomorphic
encryption scheme, which has the property that checking if
an encrypted value is zero can be done more efficiently than
simply decrypting the value. The authors prove the semantic
security of the DGK cryptosystem under the hardness of
factoring assumption. An extension of this protocol to the case
where none of the parties knows the two numbers that have to
be compared, which is of interest to us, was proposed in [28].

Let C have two encrypted values under the Paillier scheme,
[[a]] and [[b]], obtained from (12), and let T have the decryp-
tion key. At the end, T will have the result of the comparison
in the form of one bit t such that (t = 1) ⇔ (a ≤ b). Let l
denote the number of bits of the unencrypted inputs a, b. The
comparison protocol, that we call Protocol DGK, is based on
the fact that the most significant bit of (b−a+2l) is the bit that
indicates if (a ≤ b). The security of this comparison protocol
is proved in [26], [28] and is based on the semantic security
of the schemes used and on security of statistical blinding.

Secure update protocol. We need to ensure that when
the cloud updates the value of the dual iterate at iteration
k + 1 in equation (11), it does not know the new value. The
solution is to have the cloud blind the values of [[a]] and [[b]]
and send them to the target node in this order, which selects
the value accordingly to the comparison result and then sends
it back to the cloud. First, the blinding should be additive
and effectuated with different random values. Second, a re-
randomization of the encryptions should be performed so that
the cloud cannot identify [[a]] and [[b]] from the received value.
This can be done by adding an encryption of zero. Protocol 1
is the solution to the update problem. The intuition is that if
a ≤ b, then t = 1 and we obtain µ = b̄−s = b, and otherwise,
t = 0 and we obtain µ = ā− r = a.

Protocol for solving strictly-convex quadratic problems.
With these blocks, we build Protocol 2 that represents one
iteration (11) of the dual projected gradient ascent. Line 3
ensures that the updated iterate has the required number of
bits for the comparison protocol. This step is achieved by an
exchange between the cloud and target node.

We finally assemble Protocol 3 that privately solves the
constrained quadratic optimization problem (3) with private
data and sends the optimal solution to the target node.

B. Fixed-point arithmetic

The optimization problem (3) is defined on real variables,
whereas the Paillier encryption scheme is defined on integers.

To address this issue, we adopt a fixed-point arithmetic setting.
We consider a value having li bits for the integer part and lf
bits for the fractional part. Therefore, by multiplying the real
values by 2lf and truncating the result, we obtain integers. We
choose l = li + lf large enough such that the loss in accuracy
is negligible and assume that there is no overflow. For ease of
exposition, we consider this data processing done implicitly
in the protocols described. The random numbers used for
blinding the sensitive values (namely, in Protocols DGK and 1)
are sampled uniformly from integers of l + λ bits, where λ
is the statistical security parameter, as already explained in
Section II. In order to guarantee correctness of the comparison
protocol, we must impose log2N > l + λ+ 1.

PROTOCOL 1: Private update of the dual variable
Input: C: [[a]], [[b]]; T : t such that (t = 1)⇔ (a ≤ b)
Output: C: [[µ]]

1: C: choose two random numbers r, s
2: C: [[ā]]← [[a]]⊕ [[r]], [[b̄]]← [[b]]⊕ [[s]]
3: C: send [[ā]] and [[b̄]] to T
4: if t = 0 then T : [[v]]← [̃[ā]] = [[ā]] + [[0]]

5: else T : [[v]]← [̃[b̄]] = [[b̄]] + [[0]]
6: end if . Re-randomize the ciphertext
7: T : send [[v]] and [[t]] to C
8: C: [[µ]]← [[v]]⊕ r ⊗ [[t]]⊕ [[−r]]⊕ (−s)⊗ [[t]]

PROTOCOL 2: Private iteration of the dual projected gradient
ascent method

Input: C: AC ∈ Rm×n, QC ∈ Sn
++, [[bA]], [[cA]], η, [[µk]]; T : skT

Output: C: [[µk+1]]
1: C: [[∇g(µk)]]← (−ACQ−1

C Aᵀ
C)⊗[[µk]]⊕(−ACQ−1

C )⊗[[cA]]⊕
(−1)⊗ [[bA]] . Compute the encrypted gradient as in (7)

2: C: [[µ̄k]]← [[µk]]⊕ η ⊗ [[∇g(µk)]] . Update iterate value
3: C, T truncate [[µ̄k]] to l bits
4: C executes (12): C gets [[ak]], [[bk]] . Randomize inputs
5: C, T execute Protocol DGK element-wise on inputs [[ak]], [[bk]]:
T gets tk . Secure comparison protocol

6: C, T execute Protocol 1: C obtains [[µk+1]] . Secure update
protocol that ensures µk+1 = max{µ̄k, 0}

PROTOCOL 3: Privacy preserving algorithm for solving
strictly-convex quadratic optimization problems

Input: Ai=1,...,p: bA = {bj}j=1,...,m, cA = {cj}j=1,...,n; C: AC ∈
Rm×n, QC ∈ Sn

++, η > 0,K; T : skT ,K
Output: T : x∗

1: for i=1,. . . ,p do
2: Ai : encrypt the private information msgi ← ([[bi]], [[ci]])
3: Ai : send the encrypted messages to C
4: end for
5: C: Construct the vectors [[bA]] and [[cA]] from the messages
6: C: η ← 1/λmax(ACQ

−1
C Aᵀ

C)
7: C: Choose a random positive initial value µ0 for the dual variable

and encrypt it: [[µ0]]
8: for each k = 0, . . . ,K − 1 do
9: C, T execute Protocol 2: C gets [[µk+1]] . C, T securely

effectuate an iteration of the dual projected gradient ascent
10: end for
11: C: [[x∗]] ← (−Q−1

C Aᵀ
C)⊗ [[µK ]]⊕ (−Q−1

C )⊗ [[cA]] and send
it to T . Compute the primal optimum from the dual optimum

12: T : Decrypt [[x∗]] and output x∗
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V. PRIVACY OF QUADRATIC OPTIMIZATION PROTOCOL

Theorem 1. Protocol 3 achieves privacy with respect to
Definition 2 for non-colluding parties.

The intuition for the proof is as follows. Consider an itera-
tion of the gradient ascent in Protocol 3, i.e., Protocol 2. First,
two Paillier ciphertexts are computationally indistinguishable
to a party that does not own the decryption key. Second, the
exchanges between the cloud and the target are additively
blinded using a different random number uniformly sampled
from a large enough range, which make the blinded messages
statistically indistinguishable from random numbers. Third,
the ciphertexts are refreshed after each exchange, so a party
cannot infer information about the encrypted values by simply
comparing the ciphertexts. Then, none of the parties can infer
the magnitude or the sign of the private variables. Furthermore,
we show that privacy is not broken by running an iteration
multiple times. We prove that storing the exchanged messages
does not give any new information on the private data using
similar arguments. The detailed proof is given in Appendix A.

The definition of privacy is naturally extended in the multi-
party case: even under collusions, the protocol securely com-
putes the functionality of solving a quadratic optimization
problem. No further information is revealed than what can
be inferred from the coalition’s inputs and outputs. However,
if all agents and the cloud collude or if the cloud colludes with
the target node, then they have access to all the information in
the system, in which case the above result is rather vacuous.
Hence, we only consider coalitions between a strict subset of
the agents and the cloud or the target node.

Theorem 2. Protocol 3 achieves privacy against coalitions.

The proof of Theorem 2 is given in the technical report [22].

VI. PRIVACY DISCUSSION

In this section we discuss privacy aspects that differ from the
computational notions of Definition 2. Even if the execution
of a protocol does not leak anything, the known information
in a coalition (e.g., the output and some of the inputs) can be
used to infer the rest of the private inputs. Specifically, in our
optimization problem, the private variables and the optimal
solution are coupled via the optimality conditions (8)-(10),
which are public knowledge, irrespective of the protocol.

Consider the following definition that concerns the retrieval
of private data from adversarial/known data.

Definition 3. (Non-unique retrieval) Let p be the private
inputs of a problem and let an algorithm A(p) solve that
problem. Let K be some adversarial knowledge, which can
contain public information, some private information and the
output of algorithm A for the adversary, denoted by AK(p).
We say p cannot be uniquely retrieved by the adversary
if there exists a set U , such that p ∈ U , |U| ≥ 2 and:
∀p′ ∈ U : AK(p) = AK(p′).

Definition 2 imposes stronger requirements but is not con-
cerned with the output-input relation, whereas Definition 3
also explores what inputs of a coalition can reveal about the
inputs of the honest parties.

In what follows, we carry out an algebraic analysis on a
black-box protocol that, given the agents’ private data bA, cA
and the cloud’s matrices QC , AC , outputs the solution x∗ of
Problem (3) to the target node. We provide conditions such
that a coalition cannot uniquely determine unknown private
inputs in the sense of Definition 3. This analysis applies to
Protocol 3 which, assuming it runs for sufficient iterations,
outputs the desired result x∗ to the target node.

Suppose without loss of generality that a coalition between
p̄ agents (1 ≤ p̄ < p) has access to the elements b1, . . . , bm̄
with 0 ≤ m̄ ≤ m, and c1, . . . , cn̄ with 0 ≤ n̄ ≤ n. Then let
us define the decomposition of the matrix AC as:

AC =

[
A1

A21 A22

]
(13)

with A1 ∈ Rm̄×n, A21 ∈ R(m−m̄)×n̄, A22 ∈ R(m−m̄)×(n−n̄).

Proposition 1. Consider a protocol solving Problem (3) and
a coalition between the target node and agents with access to
m̄ of the values of bA and n̄ of the values of cA. Suppose the
cost and constraint matrices AC , QC are public. Then:
(1) if m̄ < m and there exists a vector δ ∈ Rm−m̄ such that
δ 6= 0, δ � 0 and Aᵀ

21δ = 0, then the coalition cannot uniquely
retrieve the value of bA;
(2) if additionally n̄ < n and Aᵀ

22δ 6= 0 then the coalition
cannot uniquely retrieve the value of cA.

Proposition 2. Consider a protocol solving Problem (3) and
a coalition between the cloud and agents with access to m̄ of
the values of bA and n̄ of the values of cA. Then, a coalition
that satisfies m̄ < m and n̄ < n cannot uniquely retrieve the
values of bA, cA and x∗.

The proof of Proposition 1 is given in Appendix B. The
proof of Proposition 2 follows from the fact that QC is a
positive definite matrix and AC does not have columns or rows
of zeros. A coalition between the cloud and the p̄ < p agents
cannot solve (3) as it lacks the data to define it, so it cannot
uniquely retrieve x∗ and the rest of the agents’ private data.

VII. IMPLEMENTATION

The efficiency of a secure multi-party protocol is measured
in the complexity of the computations performed by each
party, as well as in the number of rounds of communication.
While the former is relevant from the perspective of the level
of computational power required, the latter is relevant when
the communication network is unreliable.

The agents are low-power platforms and are only required to
effectuate one encryption and send one message, but the
cloud and the target node are platforms with higher computa-
tional capabilities. Protocol 3 involves O(K) plaintext matrix-
encrypted vector products and O(Km) encrypted scalar sums
performed at the cloud, O(Kml) DGK decryptions and en-
cryptions, O(Km) Paillier decryptions and encryptions and
O(Km) encrypted scalar sums and plaintext scalar-encrypted
scalar products at the target node, with O(K) batches of
messages communicated in-between.

The trade-off between privacy and communication emerges
when adding an artificial delay of 10 ms, respectively 20 ms, to
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Fig. 2. Average running times of Protocol 3 for problem instances with
the number of variables on the abscissa and the number of constraints in
the legend. The full lines correspond to no communication delay, the dashed
lines correspond to a 10 ms delay and the dotted lines to a 20 ms delay. The
simulation is run for 30 iterations, a 1024 bit key and 32 bit messages, with
16 bit precision. The statistical parameter for additive blinding is 100 bits.

simulate the delays that can occur in communication networks.
Because the blinded communication between the parties is
added to ensure privacy, the communication delay impacts
more a fully private protocol than a less private one.

We implemented [29] the protocol proposed in Section IV-A
in Python 3 and ran it on a 2.2 GHz Intel Core i7 processor.
Figure 2 depicts the average online running time of Protocol 3,
for random instances of the data in Problem (3), with 0 ms, 10
ms and 20 ms delay for communication, run for 30 iterations
of the gradient ascent algorithm, for ease of comparison.
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APPENDIX

A. Proof of Theorem 1

In what follows, we successively discuss the views of each
type of party participating in the protocol: agents, cloud and
target node. We avoid mentioning the public key pkT , number
of iterations K and number of bits l in the views, since they
are public. We denote by I the inputs of all the parties:

I = {bA, cA, AC , QC , skT }.

Proposition A.1. Protocol 2 is secure in the semi-honest
model, according to Definition 2.

The proof of Proposition A.1 is contained in the proof of
Theorem 1 and resembles the argmax protocol in [30].

1) Simulator for agent Ai: Agent Ai, i = 1, . . . , p, has
inputs IAi

= ({bj}j=1,...,mi
, {cj}j=1,...,ni

) and view:

VAi(I) := (bj , cj , [[bj ]], [[cj ]], coins),

where coins represent the random values used for encryption.
The agents are only online to send their encrypted data to the

cloud, and they do not have any role and output afterwards. A
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simulator SAi
simply generates the random values necessary

to encrypt its inputs, and output the view obtained. We denote
by ·̃ the quantities of the simulator, which are different than
the quantities of the agents, but follow the same distribution:

SAi
:= (bj , cj , ˜[[bj ]], ˜[[cj ]], c̃oins),

It follows that the protocol is secure with respect to the agents.
Next, we construct a sequence of algorithms to obtain that

the views of the cloud and the target node after the execution of
K iterations is the same as the view of simulators that simply
execute K iterations with random exchanged messages. For
ease of exposition, we will treat µ, bA and cA as scalars. The
same steps are repeated for every element in the vectors.

2) Simulator for the cloud C: The view of the cloud during
the execution of lines 5-6 is:

V −1
C (I) =

(
AC , QC , η, [[bA]], [[cA]], [[µ0]], coins

)
=: I−1

C .

Furthermore, we construct the view of the cloud at iteration
k = 0, . . . ,K − 1 during the execution of an instance of
Protocol 2, on the inputs of all parties: the inputs I and the
data the parties had at iteration k − 1. We denote the view
of the cloud at iteration k − 1 by Ik−1

C which, along with I
and the view of the target node at iteration k− 1, denoted by
Ik−1
T (17), will be the input of the view at iteration k.

Īk−1 := I ∪ Ik−1
C ∪ Ik−1

T , (14)

IkC := V kC (Īk−1) =
(
Ik−1
C , [[µk]], [[µ̄k]], πk, coins1k︸ ︷︷ ︸

Eq. (12)

, (15)

ρk, [[tk]],mcompk , coins2k︸ ︷︷ ︸
Protocol DGK

, rk, sk, [[vk]], [[µk+1]], coins3k︸ ︷︷ ︸
Protocol 1

)
,

where mcompk are messages exchanged in the DGK protocol,
and coinsjk, for j = 1, 2, 3 are the random numbers generated
in the corresponding protocol. Finally, the view of the cloud
after the execution of line 11 in Protocol 3 is:

V KC (ĪK−1) =
(
IK−1
C , [[x∗]]

)
. (16)

Therefore, the view of the cloud during the whole execution
of Protocol 3 is: VC(I) := V KC (ĪK−1).

We first construct a simulator on the inputs IC = {AC , QC}
that mimics V −1

C (I): • Generate n + m random numbers
of l bits b̃A, c̃A; • Generate a random positive initial value
µ̃0; • Generate n + m + 1 uniformly random numbers for
the Paillier encryption and denote them c̃oins; • Compute
[[b̃A]], [[c̃A]], [[µ̃0]]; • Compute η following line 6; • Output
S−1
C (IC) =

(
AC , QC , [[b̃A]], [[c̃A]], η, [[µ̃0]], c̃oins

)
=: Ĩ−1

C .
Proposition A.1 states that there exists a probabilistic

polynomial-time (ppt) simulator for the functionality of Pro-
tocol 2 on inputs (AC , QC , [[bA]], [[cA]], η, [[µk]]) and output
[[µk+1]]. However, we need to show that we can simulate the
functionality of consecutive calls of Protocol 2, or, equiva-
lently, of one call of Protocol 2 but on the augmented input that
contains the data of the cloud in the previous iterations. Denote
such a simulator SkC , that on the input Ik−1

C mimics V kC (Īk−1)
in (15), for k = 0, . . . ,K−1: • Compute [[∇g(µk)]] and [[µ̄k]]
as in lines 1-2 of Protocol 2 from [[µk]], [[bA]], [[cA]] which
are included in Ik−1

C ; • Generate a random permutation π̃k and
apply it on ([[0]], [[µ̄k]]) as in (12); • Follow Protocol DGK
and replace the messages by encryptions of random values to

obtain ρ̃k, m̃compk ; • Generate random bit t̃k and its encryption
[[t̃k]]; • Generate random values r̃k and s̃k as in line 1 in
Protocol 1 and their encryptions [[r̃k]], [[s̃k]]; • Obtain [[ṽk]]
by choosing between the elements of π̃k([[0]], [[µ̄k]])+(r̃k, s̃k)
according to the generated t̃k; • Compute [[µ̃k+1]] as
in line 8 of Protocol 1; • Denote the rest of the ran-
dom values used for encryption and blinding by c̃oinsk;
• Output SkC(Ik−1

C ) = (Ik−1
C , [[µ̄k]], [[π̃k]], [[z̃k]], m̃compk , [[t̃k]],

[[r̃k]], [[s̃k]], [[ṽk]], [[µ̃k+1]], c̃oinsk) =: ĨkC .
Finally, a simulator SKC (IK−1

C ) =: ĨKC for V KC (ĪK−1) is
obtained by simply performing line 11 on the inputs.

Proposition A.2. SkC(Ik−1
C )

c≡ V kC (Īk−1), for
k = −1, . . . ,K, where I−2

C := IC .

The proof is given in the technical report [22]. Thus, we
obtained that IkC

c≡ ĨkC , for k = −1, . . . ,K.

Corollary A.1. SkC(Ĩk−1
C )

c≡ SkC(Ik−1
C ), which is equivalent to

Sk+1
C (SkC(Ik−1

C ))
c≡ Sk+1
C (V kC (Īk−1)), for k = 0, . . . ,K − 1.

Finally, we construct a simulator SC(IC) for the execution
of Protocol 3 and show that its view is computationally
indistinguishable from VC(I). To this end, we define the
following sequence of views:

VC(I) = H−1(I) = V KC (ĪK−1)

H0(I) = SKC ◦ V K−1
C (ĪK−2)

H1(I) = SKC ◦ SK−1
C ◦ V K−2

C (ĪK−3)...
HK(I) = SKC ◦ SK−1

C ◦ . . . ◦ S0
C ◦ V −1

C (I)

SC(IC) = HK+1(IC) = SKC ◦ SK−1
C ◦ . . . ◦ S0

C ◦ S−1
C (IC).

By transitivity, H−1 and HK+1 are computationally indis-
tinguishable if:

H−1
c≡ H0

c≡ . . . c≡ Hk
c≡ Hk+1

c≡ Hk+2
c≡ . . . c≡ HK+1.

This result follows from induction on Corollary A.1. In
conclusion, we obtain that SC(IC)

c≡ VC(I), which verifies
that Protocol 3 achieves privacy with respect to the cloud.

3) Simulator for the target node T : The input and output
of the target node in Protocol 3 are IT = (skT , x

∗). The view
of the target node during iteration k is:

IkT :=V kT (Īk−1) = (skT , zk, tk,mcompk , coins2k︸ ︷︷ ︸
Protocol DGK

,

āk, b̄k, vk, coins3k︸ ︷︷ ︸
Protocol 1

).
(17)

The view of the target node during the last step is:

V KT (ĪK−1) = (IK−1
T , [[x∗]]). (18)

As before, the view of the target node during the execution
of Protocol 3 is: VT (I) := V KT (ĪK−1).

In order to construct a simulator for the target node,
we show that the target node is not capable of inferring
new relevant information about the private data although it
has access to the data from multiple iterations and to the
optimal solution x∗. Apart from the last message, which is
the encryption of the solution [[x∗]], and the comparison
results tk, all the values the target node receives are blinded
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with different values at each iteration. The target node knows
that QCx∗ = Aᵀ

CµK − cA and µK = vK − r̄K , for some
random value r̄K . However, although it has access to x∗ and
vK , it cannot infer any new information about cA, thanks
to the randomization that blinds µK . Due to the random
permutation aK−1, bK−1 = πK−1(0, µ̄K−1), the target node
cannot identify the sign of µ̄K−1 and magnitude of µK , even
if it knows tK−1. So, having access to x∗ = xK does not bring
any information about the values in the intermediary steps.

We now investigate the relation between the messages from
consecutive iterations. From Protocol DGK, T receives zk,
which is the additively blinded value of bk − ak + 2l, and
other blinded values, denoted in (17) as mcompk . Provided the
blinding noises are refreshed at every iteration, T cannot infer
any information about bk − ak, as follows from Section III.
Furthermore, from the update protocol 1, T knows the values
of vk and tk, but not of πk, µ̄k, rk, sk, and πk+1. Then, T
cannot construct vk+1 from vk. This guarantees that an integer
ṽik selected uniformly at random from [2l+λ, 2l+λ+1) will have
the distribution statistically indistinguishable from vik. More-
over, the target cannot retrieve µk+2 from vk and vk+1. Similar
arguments hold for the blinded messages in Protocol DGK.

We now build a simulator ST that applies the steps of
the protocol on randomly generated values. Proposition A.1
states that there exists a ppt simulator for the functionality
of Protocol 2 on I−1

T = {skT }. However, we need to show
that we can simulate the functionality of consecutive calls of
Protocol 2, or, equivalently, of one call of Protocol 2 but on
inputs (IkT , x

∗). Denote such a simulator SkT , that on the inputs
(IkT , x

∗) should output a view that is statistically indistinguish-
able from V kT (Īk−1) in (17), for k = 0, . . . ,K−1. We already
showed that although the target node knows the output x∗ and
the messages from all the iterations of Protocol 3, it cannot
extract information from them or correlate the messages to
the iteration they arise from, so x∗ is only relevant for SKT .
• Generate a λ+ l bits random integer ρ̃k, add 2l and get z̃k;
• Generate a random bit t̃k; • Choose a random bit δ̃T . If it
is 0, generate l non-zero random values, else generate l − 1
non-zero random values and one 0 value. Denote them by
m̃compk (for Protocol DGK [28]); • Generate random integers
of length l + λ + 1 ˜̄ak and ˜̄bk; • Compute ṽk according to
t̃k; • Denote all Paillier and DGK generated coins by c̃oins;
• Output SkT (Ik−1

T , x∗) = (Ik−1
T , z̃k, t̃k, m̃compk , ˜̄ak, ˜̄bk, ṽk,

c̃oins) =: ĨkT .
Finally, a simulator SKT (IK−1

T , x∗) =: ĨKT for V KT (ĪK−1)
is obtained by simply generating an encryption of x∗ and
outputting: (IK−1

T , [̃[x∗]]).

Proposition A.3. SkT (Ik−1
T , x∗)

c≡ V k(Īk−1), k = 0, . . . ,K.

The proof is given in the technical report [22]. Thus, we
obtained that ĨkT

c≡ IkT , for k = 0, . . . ,K.

Corollary A.2. SkT (Ĩk−1
T , x∗)

c≡ SkT (Ik−1
T , x∗),

which is equivalent to Sk+1
T (SkT (Ik−1

T , x∗), x∗)
c≡

Sk+1
T (V k(Īk−1), x∗), for k = 1, . . . ,K − 1.

Finally, we construct a simulator ST (IT ) for the execution
of Protocol 3 and we show that its view is statistically

indistinguishable from VT (I). To this end, we define the
following sequence, from which we drop the input x∗ to the
simulators to not overburden the notation:

VT (I) = H0(I) = V KT (ĪK−1)

H1(I, x∗) = SKT ◦ V K−1
T (ĪK−2)

H2(I, x∗) = SKT ◦ SK−1
T ◦ V K−2(ĪK−3)...

HK(I, x∗) = SKT ◦ SK−1
T ◦ . . . ◦ S1 ◦ V 0

T (I)

ST (IT ) = HK+1(IT ) = SKT ◦ SK−1
T ◦ . . . ◦ S1 ◦ S0

T (IT )

By transitivity, H0 and HK+1 are computationally indistin-
guishable if:

H0
c≡ H1

c≡ . . . c≡ Hk
c≡ Hk+1

c≡ Hk+2
c≡ . . . c≡ HK+1.

The result follows from induction on Corollary A.2. In con-
clusion, we obtain that ST (IT )

c≡ VT (I) which verifies that
Protocol 3 achieves privacy with respect to the target node.

The proof of Theorem 1 is now complete.

B. Proof of Proposition 1
The coalition has access to the following data, which is

fixed: AC , QC , x∗, {bi}i=1,...,m̄, {ci}i=1,...,n̄.
Proof of (1). We address two cases: the non-strict satisfac-

tion and the equality satisfaction of the constraints.
(I) Suppose there exists a solution (µ, {bi}i=m̄+1,...,m,
{ci}i=n̄+1,...,n) to the KKT conditions such that aᵀi x

∗ < bi for
some m̄+ 1 ≤ i ≤ m. In particular, this implies that µi = 0.
Then define c′ := cA, µ′ := µ and b′ such that b′j := bj for
all j 6= i and b′i ≥ aᵀi x

∗. The new set of points (µ′, b′, c′) is
also a solution to the KKT conditions, by construction.
(II) Suppose there exists a solution (µ, {b}i=m̄+1,...,m,
{c}i=n̄+1,...,n) to the KKT conditions such that aᵀj x

∗ = bj
for all j = m̄+ 1, . . . ,m. Consider there exists a vector δ
that satisfies δ � 0 and Aᵀ

21δ = 0. Compute ε ≥ 0 as:

ε = min
δk>0,k=m̄+1,...,m

(
µk/δk

)
.

Then, construct µ′ := µ − ε
[

0 δᵀ
]ᵀ

that satisfies µ′ � 0
and µ′i = 0 for some m̄+ 1 ≤ i ≤ m that is the argument
of the above minimum. Furthermore, define c′ := cA +
ε
[

0 δᵀA22

]ᵀ
and b′ such that b′j := bj for all j 6= i and b′i

to be any value b′i > bi. Then (b′, c′, µ′) is also a solution to
the KKT conditions. More specifically, the complementarity
slackness condition holds for all j = m̄+ 1, . . . ,m, j 6= i:
µ′j (aᵀj x

∗ − b′j) = µ′j(a
ᵀ
j x
∗ − bj) = 0 and µ′i(a

ᵀ
i x
∗ − b′i) = 0.

Then we can check the gradient condition:

QCx
∗ +Aᵀ

Cµ
′ + c′ = QCx

∗ +Aᵀ
Cµ+ cA = 0.

Hence, b′ 6= bA satisfies the KKT conditions and the coalition
cannot uniquely determine bA.

Proof of (2). Consider a solution (µ, {b}i=m̄+1,...,m,
{c}i=1,n̄+1,...,n) to the KKT conditions. For some ε > 0 define
µ′ := µ + ε

[
0 δᵀ

]ᵀ
and c′ := cA − ε

[
0 δᵀA22

]ᵀ
.

Define b′ such that for all j, it holds that b′j = aᵀj x
∗. Then

(µ′, b′, c′) is also a solution to the KKT conditions. Specifi-
cally, it follows that µ′ � 0. Moreover the complementarity
slackness condition holds by construction of b′, and as before
the gradient condition holds. Hence, c′ 6= cA satisfies the KKT
solution, and the coalition cannot uniquely determine cA.
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